ACTION EFFECTIVENESS MONITORING RESEARCH REPORT FROM WETLANDS AND POTENTIAL BENEFITS TO MAINSTEM MIGRANTS

CURTIS ROEGNER

WILLAMETTE FISHERIES
SCIENCE REVIEW

13 March 2019 Corvallis, OR

AEMR Conceptual model: Prey production in restored tidal wetlands benefit juvenile salmon <u>directly</u> onsite and <u>indirectly</u> offsite

AEMR Conceptual model: Prey production in restored tidal wetlands benefit juvenile salmon <u>directly</u> onsite and <u>indirectly</u> offsite

1. Contribution of salmon insect prey from tidal wetlands

WHAT WE WANT TO KNOW:

Tidal Transport
$$T_T = \int_{ebb} T = ind$$

By spp & energetic content

WHAT WE HAVE TO MEASURE:

Discharge = Velocity x Area U (m/s) x A (m^2)

Prey Concentration

Q (m³/s)

C (ind/m³)

Each is time varying

Instantaneous Transport Q x C = T (ind/s)

MEASUREMENTS

SB-PC-02

CALCULATIONS

CALCULATIONS

WHAT WE WANT TO KNOW: Tidal Transport $T_T = \int_{ebb} T$

Reality check:

- If C = 1 ind/m³ and Q = 1 m³/s, T = 1 ind/sec.
- In 1 hr, 3600 ind would be transported; in 6 h ebb tide, Total $T = 2.16 \times 10^4$ ind

Relatively high numbers of prey are exported/tide

WHAT IS GETTING EXPORTED?

Insect Order

WHAT ARE THE PREY ENERGY EQUIVALENTS?

2. WHAT IS BENEFIT FOR YEARLING SALMON?

Salmon Energy Equivalents (SEE) = number of salmon supported at basal metabolic level by exported prey kJ prey transported / kJ per day for standard salmon.

- 1. Convert prey abundance to energy
- For chironomids: 1 ind = 10^{-3} g ED = 3.83 kJ/g
- Prey energy = ΣT ind x 10⁻³ g/ind x 3.38 kJ/g = kJ
- 2. Standard energy requirements for 180 mm yearling salmon
- $50 \text{ kJ/kg/d} \times 0.060 \text{ kg} = 3.0 \text{ kJ/d}$

Note: Standard energy requirements for 80 mm subyearling salmon

• 50 kJ/kg/d x 0.005 kg = 0.25 kJ/d \rightarrow 12 x subs for every yearling

SAMPLES COLLECTED 2016-2017

LONG TERM ADCP DEPLOYMENTS

DATE	DOY	SITE ID	STATION	TRT	Duration
18-Apr-17	108	Karlson	FORESTED E	REFERENCE	13
4-May-17	124	Karlson	FORESTED W	REFERENCE	12
2-Jun-17	153	Karlson	MARSH W	REFERENCE	24
20-Jun-17	171	Steamboat	PRIMARY	IMPACT	38
24-Jul-17	205	Karlson	FORESTED E	REFERENCE	22
24-Jul-17	205	Karlson	MARSH E	REFERENCE	22

	•	•	1			
Location	Site	Habitat	TRT	Dates	Neuston	
Steamboat	Main Ch	Mouth	RES	3	35 24	
	Primary Ch*	Emergent	RES	2	24	
	Secondary Ch	Emergent	RES	3	18	
Karlson	Res	Emergent	RES	4	27	
	Ref inside	Emergent	REF	5	40	
	Marsh E	Emergent	REF	3	23	
	Marsh W	Emergent	REF	6	33	
	Forested E	Forested	REF	3	26	
	Forested W	Forested	REF	3	31	
Welsh	Ref	Emer/Shrub	REF	3	18	
	Primary Ch*	Emer/Shrub	REF	2	15	
		11		37	290	

3. PRELIMINARY RESULTS FOR REFERENCE AND RESTORATION WETLANDS

Site characteristics

Yearling SEE by insect

Habitat	CODE	DOY	Dur (h)	dH (m)	dV (m3)	T Inverts	T Insecta	SEE from	SEE from	SEE from	SEE from	Total Yrlgs
								Ceratop.	Chiron.	Corix.	Aphid.	/tide
Forested	KI-FE-01	94.4	4.2	1.4	25030.7	45151.1	23541.6	0.0	15.9	0.0	3.2	19.1
Forested	KI-FE-02	124.5	3.3	1.1	20762.0	49956.6	30763.2	0.0	25.9	0.0	1.5	27.4
Forested	KI-FE-03B	151.3	3.9	1.8	10361.8	120622.8	93132.6	45.2	26.2	78.3	7.5	157.3
Forested	KI-FW-01	95.4	4.2	1.4	17289.2	9881.6	7489.4	0.0	5.9	0.0	0.0	5.9
Forested	KI-FW-02	123.4	4.3	1.5	52110.4	105880.3	102638.3	8.3	54.1	0.0	1.7	64.1
Emergent	KI-ME-02	129.6	4.1	1.0	24254.6	85253.0	61853.5	15.7	36.4	0.0	0.0	52.1
Emergent	KI-ME-03	150.4	2.2	0.9	NA	30197.1	15698.5	4.4	11.0	1.9	0.0	17.3
Emergent	KI-MW-01	108.4	3.0	1.0	10807.3	154908.6	75440.24	0.0	72.6	0.0	0.0	72.6
Emergent	KI-MW-02A	122.4	1.3	0.5	7193.1	122217.0	35872.9	0.0	39.1	0.0	0.0	39.1
Emergent	KI-MW-2b	125.6	1.9	0.6	8454.6	330742.6	118472.2	12.3	96.6	0.2	0.0	109.1
Res/Emerg	SB-PC-02	142.5	4.7	1.1	26729.3	664747.1	387991.3	62.9	384.2	0.9	1.9	449.9
Res/Emerg	SB-PC-03	170.5	4.2	1.0	NA	507252.0	312983.6	8.0	363.2	0.0	0.7	371.9
Res/Emerg	SB-SC-01	114.6	3.0	1.0	5584.6	9023.0	5134.4	0.1	6.0	0.0	0.0	6.1
Res/Emerg	SB-SC-02	137.4	3.3	0.7	4121.5	57821.6	33876.9	2.9	40.2	0.0	0.0	43.1
Res/Emerg	SB-SC-03	170.5	3.8	0.8	5806.9	37784.4	20013.6	21.1	22.5	0.0	0.0	43.5

But relatively high numbers of yearlings potentially supported

4. SCALING TO LOCAL SCALE (WORK IN PROGRESS)

Scaling over time

Combine SEE per day per habitat type for June

- SEE / tide x 2 tides / day
 - → 828 SEE /d
- For month of June
 - \rightarrow 2.5 x 10⁴ yrlg salmon

Scaling by channel metrics

- Additional channels
 - → 250 SEE/d
- For month of June
 - \rightarrow 7.5 x 10³ yrlg salmon

Total for June = 3.25×10^4

STEAMBOAT

4. SCALING TO LOCAL SCALE (WORK IN PROGRESS)

Scaling* by habitat

- Wetland type –vegetation type
 - Emergent Marsh
 - Forested
 - Scrub/shrub
- Restoration / Reference
 - Restoration trajectory

Other factors to consider in scaling model

- Different hydrogeomorphic reaches
- Spring / Neap cycle
- Seasonal effects
 - Temperature
 - salmon metabolic rate & run time
 - insect production & type

KARLSON

4. SCALING UP TO REGIONAL SCALE

WHAT IS BENEFIT OF WETLAND RESTORATION FOR YEARLING SALMON?

SUMMARY:

- 1. Completed 2 seasons of sampling from 11 tidal channels
- 2. Prey transport varies by concentration and volume flux need both measurements
- 3. Chironomids were the dominate prey exported
- 4. Based on Salmon Energy Equivalents, 10s to 100s of yearling or 100s to 1000s of subyearling salmon could be supported per tidal creek per tide

MANAGEMENT IMPLICATIONS:

- 1. Wetlands can deliver significant prey resources to the mainstem river.
- 2. Salmon do not have to enter wetlands to access prey.
- 3. Migrating salmon from all species and stocks traverse lower river sites and can therefore benefit.
- 4. Important to preserve wetland foodwebs and continue to restore degraded systems.